000 01369nam a2200193Ia 4500
999 _c7028
_d7028
005 20201231162442.0
008 160802s9999 xx 000 0 und d
020 _a9780470689189
041 _aeng
082 _a519.535
_bCOX-I
100 _aCox, Trevor
_932091
245 _aIntroduction to multivariate data /
_cby Trevor Cox
260 _bWiley-Blackwell Publishing,
_c2014.
300 _avii, 232 p.
505 _a1.Introduction-- 2. Matrix algebra-- 3.Basic multivariate statistics-- 4.Graphical representation of multivariate data-- 5. Principal components analysis-- 6. Biplots-- 7.Correspondence analysis-- 8.Cluster analysis-- 9. Multidimensional scaling-- 10. Linear regression analysis-- 11.Multivariate analysis of variance-- 12.Canonical correlation analysis-- 13.Discriminant analysis and canonical variates analysis-- 14. Loglinear modelling-- 15.Factor analysis-- 16.Other latent variable models. Graphical modelling. Data mining.
520 _aMultivariate data appear in all scientific fields of investigation and the study of multivariate analysis has become central to the discipline of data science. This title explains how to successfully reduce a set of data with many variables to a manageable formulation where information, structure and underlying patterns are more clearly revealed.
650 _aRES
_933629
942 _cBK