000 | 01369nam a2200193Ia 4500 | ||
---|---|---|---|
999 |
_c7028 _d7028 |
||
005 | 20201231162442.0 | ||
008 | 160802s9999 xx 000 0 und d | ||
020 | _a9780470689189 | ||
041 | _aeng | ||
082 |
_a519.535 _bCOX-I |
||
100 |
_aCox, Trevor _932091 |
||
245 |
_aIntroduction to multivariate data / _cby Trevor Cox |
||
260 |
_bWiley-Blackwell Publishing, _c2014. |
||
300 | _avii, 232 p. | ||
505 | _a1.Introduction-- 2. Matrix algebra-- 3.Basic multivariate statistics-- 4.Graphical representation of multivariate data-- 5. Principal components analysis-- 6. Biplots-- 7.Correspondence analysis-- 8.Cluster analysis-- 9. Multidimensional scaling-- 10. Linear regression analysis-- 11.Multivariate analysis of variance-- 12.Canonical correlation analysis-- 13.Discriminant analysis and canonical variates analysis-- 14. Loglinear modelling-- 15.Factor analysis-- 16.Other latent variable models. Graphical modelling. Data mining. | ||
520 | _aMultivariate data appear in all scientific fields of investigation and the study of multivariate analysis has become central to the discipline of data science. This title explains how to successfully reduce a set of data with many variables to a manageable formulation where information, structure and underlying patterns are more clearly revealed. | ||
650 |
_aRES _933629 |
||
942 | _cBK |