000 | 01667nam a2200193Ia 4500 | ||
---|---|---|---|
999 |
_c4460 _d4460 |
||
005 | 20201231130003.0 | ||
008 | 160802s9999 xx 000 0 und d | ||
020 | _a9780470973929 | ||
041 | _aeng | ||
082 |
_a519.502855133 _bCRA-R |
||
100 |
_aCrawley, Michael J. _936810 |
||
245 |
_aR book / _cby Michael J. |
||
260 |
_bJohn Wiley & Sons, _c2013. _aUnited Kingdom: |
||
300 | _axxiv, 1051 p. | ||
505 | _a1. Getting Started -- 2. Essentials of the R Language -- 3. Data Input -- 4. Dataframes -- 5. Graphics -- 6 Tables -- 7. Mathematics -- 8. Classical Tests -- 9. Statistical Modelling -- 10. Regression -- 11. Analysis of Variance -- 12. Analysis of Covariance -- 13. Generalized Linear Models -- 14. Count Data -- 15. Count Data in Tables -- 16. Proportion Data -- 17. Binary Response Variables -- 18. Generalized Additive Models -- 19. Mixed-Effects Models -- 20. Non-linear Regression -- 21. Meta-analysis -- 22. Bayesian statistics -- 23. Tree Models -- 24. Time Series Analysis -- 25. Multivariate Statistics -- 26. Spatial Statistics -- 27. Survival Analysis -- 28. Simulation Models -- 29. Changing the Look of Graphics. | ||
520 | _a "Hugely successful and popular text presenting an extensive and comprehensive guide for all R users The R language is recognized as one of the most powerful and flexible statistical software packages, enabling users to apply many statistical techniques that would be impossible without such software to help implement such large data sets. R has become an essential tool for understanding and carrying out research. | ||
650 |
_aMathematical statistics _936811 |
||
942 | _cBK |