Hydrogeomorphic processes affecting dryland gully erosion: Implications for modelling/

By: Contributor(s): Material type: ArticleArticlePublication details: Sage, 2019.Description: Vol 43, issue 1, 2019 : (46-64 p.)Subject(s): Online resources: In: Progress in Physical Geography: Earth and EnvironmentSummary: Gullies contribute high sediment loads to receiving waters and significantly degrade landscapes. In drylands, low annual rainfall and resultant poor ground cover, coupled with high-intensity storms and dispersive soils, predispose these landscapes to gully erosion. Land management, such as grazing, exacerbates gully-forming processes by degrading ground cover and compacting soils, thereby increasing and concentrating overland flow. Current surface erosion models do not adequately represent sediment export from gullied terrain due to lack of distributed data and complex hydrogeomorphic processes, such as overland flow concentration, waterfall erosion, soil pipe collapse, and mass wasting. Here, we outline the strengths and weaknesses of past modelling approaches in erodible terrain and focus on how gully erosion processes can be better simulated at appropriate scales using newly available remote-sensing techniques and databases, coupled with improved understanding of relevant hydrogeomorphic processes. We also discuss and present examples of challenges related to assessing land management practices in drylands that affect gully erosion.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Call number Vol info Status Date due Barcode Item holds
E-Journal E-Journal Library, SPAB Vol. 43(1-6) / Jan-Dec, 2019. Available
Total holds: 0

Gullies contribute high sediment loads to receiving waters and significantly degrade landscapes. In drylands, low annual rainfall and resultant poor ground cover, coupled with high-intensity storms and dispersive soils, predispose these landscapes to gully erosion. Land management, such as grazing, exacerbates gully-forming processes by degrading ground cover and compacting soils, thereby increasing and concentrating overland flow. Current surface erosion models do not adequately represent sediment export from gullied terrain due to lack of distributed data and complex hydrogeomorphic processes, such as overland flow concentration, waterfall erosion, soil pipe collapse, and mass wasting. Here, we outline the strengths and weaknesses of past modelling approaches in erodible terrain and focus on how gully erosion processes can be better simulated at appropriate scales using newly available remote-sensing techniques and databases, coupled with improved understanding of relevant hydrogeomorphic processes. We also discuss and present examples of challenges related to assessing land management practices in drylands that affect gully erosion.

There are no comments on this title.

to post a comment.

Library, SPA Bhopal, Neelbad Road, Bhauri, Bhopal By-pass, Bhopal - 462 030 (India)
Ph No.: +91 - 755 - 2526805 | E-mail: [email protected]

OPAC best viewed in Mozilla Browser in 1366X768 Resolution.
Free counter