Advancing barrier island habitat mapping using landscape position information/
Material type: ArticlePublication details: Sage, 2019.Description: Vol 43, issue 3, 2019 : (425-450 p.)Subject(s): Online resources: In: Progress in Physical Geography: Earth and EnvironmentSummary: Barrier islands are dynamic ecosystems that change gradually from coastal processes, including currents and tides, and rapidly from episodic events, such as storms. These islands provide many important ecosystem services, including storm protection and erosion control to the mainland, habitat for fish and wildlife, and tourism. Habitat maps, developed by scientists, provide a critical tool for monitoring changes to these dynamic ecosystems. Barrier island monitoring often requires custom habitat maps due to several factors, including island size and the classification of unique geomorphology-based habitats, such as beach, dune, and barrier flats. In this study, we reviewed barrier-island-specific habitat mapping efforts and highlighted common habitat class types, source data, and mapping approaches. We also developed a framework for mapping geomorphology-based barrier island habitats using a rule-based, geographic object-based image analysis approach, which included the use of field data, tide data, high-resolution orthophotography, and lidar data. This framework integrates several barrier island mapping advancements with regard to the use of landscape position information for automated dune extraction and the use of Monte Carlo analyses for the treatment of elevation uncertainty for elevation-dependent habitats. Specifically, we used the uncertainty analyses to refine automated dune delineation based on elevation relative to extreme storm water levels and to increase the accuracy of intertidal and supratidal/upland habitat delineation. We found that dune extraction results were enhanced when elevation relative to storm water levels and visual interpretation were also applied. This framework could also be applied to beach–dune systems found along a mainland.Item type | Current library | Call number | Vol info | Status | Date due | Barcode | Item holds | |
---|---|---|---|---|---|---|---|---|
E-Journal | Library, SPAB | Vol. 43(1-6) / Jan-Dec, 2019. | Available |
Barrier islands are dynamic ecosystems that change gradually from coastal processes, including currents and tides, and rapidly from episodic events, such as storms. These islands provide many important ecosystem services, including storm protection and erosion control to the mainland, habitat for fish and wildlife, and tourism. Habitat maps, developed by scientists, provide a critical tool for monitoring changes to these dynamic ecosystems. Barrier island monitoring often requires custom habitat maps due to several factors, including island size and the classification of unique geomorphology-based habitats, such as beach, dune, and barrier flats. In this study, we reviewed barrier-island-specific habitat mapping efforts and highlighted common habitat class types, source data, and mapping approaches. We also developed a framework for mapping geomorphology-based barrier island habitats using a rule-based, geographic object-based image analysis approach, which included the use of field data, tide data, high-resolution orthophotography, and lidar data. This framework integrates several barrier island mapping advancements with regard to the use of landscape position information for automated dune extraction and the use of Monte Carlo analyses for the treatment of elevation uncertainty for elevation-dependent habitats. Specifically, we used the uncertainty analyses to refine automated dune delineation based on elevation relative to extreme storm water levels and to increase the accuracy of intertidal and supratidal/upland habitat delineation. We found that dune extraction results were enhanced when elevation relative to storm water levels and visual interpretation were also applied. This framework could also be applied to beach–dune systems found along a mainland.
There are no comments on this title.