Coupling data science with community crowdsourcing for urban renewal policy analysis: an evaluation of Atlanta’s Anti-Displacement Tax Fund/

By: Contributor(s): Material type: ArticleArticlePublication details: Sage, 2020.Description: Vol. 47, Issue 6, 2020, ( 1081–1097 p.)Online resources: In: Environment and planning B: planning and design (Urban Analytics and City Science)Summary: We estimate the cost and impact of a proposed anti-displacement program in the Westside of Atlanta (GA) with data science and machine learning techniques. This program intends to fully subsidize property tax increases for eligible residents of neighborhoods where there are two major urban renewal projects underway, a stadium and a multi-use trail. We first estimate household-level income eligibility for the program with data science and machine learning approaches applied to publicly available household-level data. We then forecast future property appreciation due to urban renewal projects using random forests with historic tax assessment data. Combining these projections with household-level eligibility, we estimate the costs of the program for different eligibility scenarios. We find that our household-level data and machine learning techniques result in fewer eligible homeowners but significantly larger program costs, due to higher property appreciation rates than the original analysis, which was based on census and city-level data. Our methods have limitations, namely incomplete data sets, the accuracy of representative income samples, the availability of characteristic training set data for the property tax appreciation model, and challenges in validating the model results. The eligibility estimates and property appreciation forecasts we generated were also incorporated into an interactive tool for residents to determine program eligibility and view their expected increases in home values. Community residents have been involved with this work and provided greater transparency, accountability, and impact of the proposed program. Data collected from residents can also correct and update the information, which would increase the accuracy of the program estimates and validate the modeling, leading to a novel application of community-driven data science.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Call number Vol info Status Date due Barcode Item holds
E-Journal E-Journal Library, SPAB E-Journals Vol. 47(1-9), Jan-Dec, 2020 Available
Total holds: 0

We estimate the cost and impact of a proposed anti-displacement program in the Westside of Atlanta (GA) with data science and machine learning techniques. This program intends to fully subsidize property tax increases for eligible residents of neighborhoods where there are two major urban renewal projects underway, a stadium and a multi-use trail. We first estimate household-level income eligibility for the program with data science and machine learning approaches applied to publicly available household-level data. We then forecast future property appreciation due to urban renewal projects using random forests with historic tax assessment data. Combining these projections with household-level eligibility, we estimate the costs of the program for different eligibility scenarios. We find that our household-level data and machine learning techniques result in fewer eligible homeowners but significantly larger program costs, due to higher property appreciation rates than the original analysis, which was based on census and city-level data. Our methods have limitations, namely incomplete data sets, the accuracy of representative income samples, the availability of characteristic training set data for the property tax appreciation model, and challenges in validating the model results. The eligibility estimates and property appreciation forecasts we generated were also incorporated into an interactive tool for residents to determine program eligibility and view their expected increases in home values. Community residents have been involved with this work and provided greater transparency, accountability, and impact of the proposed program. Data collected from residents can also correct and update the information, which would increase the accuracy of the program estimates and validate the modeling, leading to a novel application of community-driven data science.

There are no comments on this title.

to post a comment.

Library, SPA Bhopal, Neelbad Road, Bhauri, Bhopal By-pass, Bhopal - 462 030 (India)
Ph No.: +91 - 755 - 2526805 | E-mail: [email protected]

OPAC best viewed in Mozilla Browser in 1366X768 Resolution.
Free counter